Free-electron lasing at 27 nanometres based on a laser wakefield accelerator

0
21


  • 1.

    Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 2.

    Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 3.

    Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 4.

    Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photon. 6, 540–544 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 5.

    Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 6.

    Bostedt, C. et al. Linac Coherent Light Source: the first five years. Rev. Mod. Phys. 88, 015007 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Mangles, S. P. et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535–538 (2004).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 9.

    Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 10.

    Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 11.

    Nakajima, K. Towards a table-top free-electron laser. Nat. Phys. 4, 92–93 (2008).

    Article 
    CAS 

    Google Scholar
     

  • 12.

    Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 13.

    Corde, S. et al. Observation of longitudinal and transverse self-injections in laser-plasma accelerators. Nat. Commun. 4, 1501 (2013).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 14.

    Gonsalves, A. J. et al. Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 7, 862–866 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 15.

    Buck, A. et al. Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett. 110, 185006 (2013).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 16.

    Liu, J. S. et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection. Phys. Rev. Lett. 107, 035001 (2011).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 17.

    Wang, W. T. et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett. 117, 124801 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 18.

    Steinke, S. et al. Multistage coupling of independent laser-plasma accelerators. Nature 530, 190–193 (2016).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 19.

    Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 20.

    Ta Phuoc, K. et al. All-optical Compton gamma-ray source. Nat. Photon. 6, 308–311 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 21.

    Sarri, G. et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 22.

    Yu, C. et al. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering. Sci. Rep. 6, 29518 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 23.

    Schroeder, C. B., Esarey, E., Geddes, C. G. R., Benedetti, C. & Leemans, W. P. Physics considerations for laser-plasma linear colliders. Phys. Rev. Spec. Top. Accel. Beams 13, 101301 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 24.

    Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Huang, Z. & Kim, K.-J. Review of X-ray free-electron laser theory. Phys. Rev. Spec. Top. Accel. Beams 10, 034801 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Anania, M. P. et al. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator. Appl. Phys. Lett. 104, 264102 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 27.

    Fang, M. et al. Long-distance characterization of high-quality laser-wakefield-accelerated electron beams. Chin. Opt. Lett. 16, 040201 (2018).

    Article 

    Google Scholar
     

  • 28.

    van Tilborg, J. et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 115, 184802 (2015).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 29.

    Maier, A. R. et al. Demonstration scheme for a laser-plasma-driven free-electron laser. Phys. Rev. X 2, 031019 (2012).


    Google Scholar
     

  • 30.

    Huang, Z., Ding, Y. & Schroeder, C. B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109, 204801 (2012).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 31.

    Loulergue, A. et al. Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 17, 023028 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 32.

    Khojoyan, M. et al. Transport studies of LPA electron beam towards the FEL amplification at COXINEL. Nucl. Instrum. Methods Phys. Res. A 829, 260–264 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 33.

    Seggebrock, T., Maier, A. R., Dornmair, I. & Grüner, F. Bunch decompression for laser-plasma driven free-electron laser demonstration schemes. Phys. Rev. Spec. Top. Accel. Beams 16, 070703 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Schlenvoigt, H. P. et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130–133 (2008).

    Article 
    CAS 

    Google Scholar
     

  • 35.

    Fuchs, M. et al. Laser-driven soft-X-ray undulator source. Nat. Phys. 5, 826–829 (2009).

    Article 
    CAS 

    Google Scholar
     

  • 36.

    André, T. et al. Control of laser plasma accelerated electrons for light sources. Nat. Commun. 9, 1334 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 37.

    Ratner, D. et al. FEL gain length and taper measurements at LCLS. In Proc. 2009 Free-Electron Laser Conference 221–224 (JACoW, 2009).

  • 38.

    Wu, F. X. et al. Performance improvement of a 200TW/1Hz Ti:sapphire laser for laser wakefield electron accelerator. Opt. Laser Technol. 131, 106453 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 39.

    Reiche, S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code, Nucl. Instrum. Methods Phys. Res. Nucl. Instrum. Methods Phys. Res. 429, 243–248 (1999).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    Hogan, M. et al. Measurements of high gain and intensity fluctuations in a self-amplified, spontaneous-emission free-electron laser. Phys. Rev. Lett. 80, 289–292 (1998).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Rossbach, J. et al. 10 years of pioneering X-ray science at the free-electron laser FLASH at DESY. Phys. Rep. 808, 1–74 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 42.

    Maier, R. et al. Decoding sources of energy variability in a laser-plasma accelerator. Phys. Rev. X 10, 031039 (2020).

    CAS 

    Google Scholar
     

  • 43.

    Lehe, R. et al. A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm. Comput. Phys. Commun. 203, 66 (2016).

    ADS 
    MathSciNet 
    MATH 
    Article 
    CAS 

    Google Scholar
     

  • 44.

    Jalas, S. et al. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods. Phys. Plasmas 24, 033115 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 45.

    Borland, M. ELEGANT: A flexible SDDS-compliant code for accelerator simulation. Technical Report No. LS-287 (Argonne National Laboratory, 2000).

  • 46.

    Flöttmann, K. ASTRA. A space charge tracking algorithm. https://www.desy.de/~mpyflo/ (DESY, 2007).

  • 47.

    Xie, M. Exact and variational solutions of 3D eigenmodes in high gain FELs. Nucl. Instrum. Methods Phys. Res. Sect. A 445, 59–66 (2000).

    ADS 
    Article 
    CAS 

    Google Scholar
     



  • Source link

    0 0 vote
    Article Rating
    Subscribe
    Notify of
    guest
    0 Comments
    Inline Feedbacks
    View all comments